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Abstract-A review of numerical techniques for the solution of heat and mass transfer problems with 
solid/liquid phase change is presented. The mathematical model for a description of a thermal field is based 
on the conventional Stefan approximation for the evaluation of phase change and the Navier-Stokes 
equations in the Boussinesq approximation for convective flows of a melt. Two basic approaches for the 
solution of these problems with a free boundary (phase change interface) are considered. The first approach 
is connected with interface-fitting algorithms (referred to in the work as variable grid methods), the 
second one with interface-smearing (fixed grid) methods. Fixed grid methods for the investigation of 
hydrodynamical phenomena in a varying calculation domain are constructed using various modifications 

of a penalty method. 

1. INTRODUCTION 

NOWADAYS many physical phenomena and tech- 

nological processes can be investigated in detail due to 
the progress in computer performance and numerical 
methods. The number of publications devoted to the 
development of numerical methods for solving con- 
vection/diffusion phase change conjugate problems 
increases every year. In accordance with this fact the 
number of papers devoted to the numerical simulation 
of various physical and technological problems with 

heat and mass transfer including phase change 

increases too. 
The earliest works on numerical simulation of 

phase change problems including convection are con- 

cerned with studying different metallurgical processes. 
Convection of a liquid metal becomes significant when 

the melting or solidification of relatively large metal 
volumes is considered [I, 21. Now con- 
vection/diffusion phase change problems arise in 
mathematical modeling of metals and alloys casting 

or melting, crystal growth, plastic production, energy 
accumulation, geology, laser processing of metals, etc. 

It is clear that a great deal of publications in this 

field need to be analyzed, comprehended and classi- 
fied. Therefore, a number of surveys have been issued 
recently. In the work of Basu and Date [3] different 

formulations and classifications of melting or sol- 
idification problems with and without convection are 
discussed primarily from the physical viewpoint. 
Voller ef al. [4] conducted an analysis of fixed grid 
numerical methods for prediction of mel- 
ting/solidification phenomena without convection 
based on the English language literature only. Surveys 
of papers devoted to the mathematical modeling and 

experimental investigations of crystallization pro- 
cesses are published periodically by Viskanta (see for 

example [5]). Methodological aspects of the math- 
ematical modeling of crystallization processes along 
with the quality and possibilities of software existing 
in this field are discussed in the survey by Kanan et 

al. [6]. 
The main purpose of the present paper is to discuss 

the state-of-the-art in modeling convection/diffusion 
phase change using the up-to-date level of applied 
and computational mathematics. Most of the works 
published in this field will be analyzed, including 
papers in Russian which are practically unknown for 
readers in English. A number of applications is also 

provided. 
Investigating convection/diffusion processes during 

melting or solidification, the following assumptions 

are adopted in the present paper : 

l convenient parabolic heat transfer equation 

based on the Fourier law is used; 
l Stefan’s conditions take place on the phase 

change boundary for pure substance solidification and 
various models of a mushy region are employed for 
alloys and mixtures solidification ; 

l thermal and/or solutal convection in the liquid 

phase are governed by the Navier-Stokes equations 
in the Boussinesq approximation for laminar flows ; 

l the density variation due to the phase change is 
neglected ; 

l a flow in a mushy region is modeled using the 
simplest models-say, in the Darcy-Boussinesq 
approximation for porous media. 

It should be noted that the above mentioned con- 

vection/diffusion phase change problems are essen- 
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NOMENCLATURE 

c specific heat at constant pressure 

II cnthalpy 
k thermal conductivity 

K permeability of a porous medium 
I, phase change cnthalpy 
P pressure 

s source term in transport equations 

I time 

T temperature 
T* phase change temperature 
v = (u. 1’, W) velocity vector 
(.u. ,r. Z) Cartesian coordinates. 

Greek symbols 
A Laplacc opcralol 

). extension parameter in the lictitious 
regions method 

IL. /l’. \’ dynamic, volumetric and kinematic 
viscosities 

I’ densit 
ri \clocily strain tensot- 
YJ solid phase volume fraction 

l/J 4rcam function 
(1, vorticit!. 

Subscripts 
el effective value 
s. I solid and liquid phases. rcspectivelq 
11 normal component. 

tially nonlinear ones. First. they are nonlinear due 
to convcctivc terms in the momentum and cncrgy 

equations. Secondly, thermophysical properties of 

considered substances often depend on the tcmpcra- 
lure. And finally, nonlinearity in the problems under 
consideration is caused by the existence of a free 
boundary--a phase change interface. The location of 

the boundary is a priori unknown and depends on 
the solution of the considered problem. The first two 
kinds of nonlinearity arc well knoM#n and widely dis- 
cussed in the literature on numerical methods for con- 
putational fluid dynamics and thcrmophysics. A host 

of papers and monographs is devoted to these non- 
linearities of common knowledge (cg. [7--l I]‘, and so 

these points will bc omitted here. 
The present paper is organized as follows. The basic 

equations governing the heat and mass transfer and 
phase change are presented in the second part. In the 
third part a short review is given on existing numerical 
methods for solving the pure heat conduction 
equation, describing melting or solidification prob- 
lems without convection. Numerical methods based 

on the interface-fitting technique arc discussed in the 
fourth part along with their applications to con- 
vection;diffusion phase change problems of practical 
interest. The fifth part covers the fixed grid numerical 
methods for solving convection/diffusion phase 
change problems as well as their application to several 
physical and technological processes. The last part is 
devoted to some conclusions. 

2. GOVERNING EQUATIONS 

The equations under the consideration governing 
the heat and mass transfer processes during the liqui- 
dus-solidus and solidus+liquidus phase change arc 
based on the conservation laws for the energy, mass 
and momentum [12]. Hereinafter in the work we shall 
write ‘solidification’ meaning that melting is governed 

by the same equations as solidification. Concerning 

the solidification processes we shall consider the Stc- 
fan problem for pure substances. that is. the phase 
change occurs at fixed temperature T = T* and t hcrc 

is a smooth phase change boundary T(r) in this case. 
On the other hand, considering alloys and mixtures 
which solidify in a tcmperaturc interval, we shall take 

into account the existence of a spatial mushy (solid 
and liquid) region between solid and liquid phases. 

2. I EfzL’f:qr cquLllion 
The temperature field in the solid phase is govcrncd 

by usual heat equation : 

(: T, 
PC‘, ir = div (li,grad r,)+S.!. ! 1 i 

In general form the convection/diffusion heat trans- 
fer equation for the liquid and mushy (if it exists) 

regions can be written as follows : 

( C-T, 
PC, (-, 

+ (v. grad) 7‘, 
) 

= div (/iI grad T, ) + S: 

(2) 

For pure substances the temperature on a smooth 
phase change interface r(t) is tixed and equal 10 a 
constant temperature of phase change : 

I~‘(/) = ((.u.?..=)lT(.~.~,._.I) = F\. (-7) 

This relation can be used to determine this boundary. 
Standard Stefan boundary conditions (continuity 01 
the temperature and jumping of the heat flux) arc 
satisfied on this boundary : 

[T] = 0, (.YJ,z)E~(~). (4) 

iT 

i 1 I\ ; = -pLV,,, (.Y.J,.I)Ei-(l). (5) 
tn 

Here [$J stands for the jump of the quantity 41 through 
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I(t) from the solid phase to the liquid one. Note that 

conditions (4) and (5) can be implemented in the heat 

conduction equation via a suitable source term. In 

this case instead of equations (l)-(5) one can consider 
a single equation, governing the convection/diffusion 
heat transfer in the whole considered domain-solid, 
mushy and liquid regions : 

pC 
(~ 

g+(v.grad)T 
> 

= div(kgradT)+S*. 

(6) 

Clearly the velocity v is identically equal to zero v = 0 

in the solid phase. Equation (6) can be used for cal- 
culating solidification of pure substances as well as 
alloys by means of appropriate source term S*. Let 

us consider these possibilities in more detail. 
First, usage of the effective heat capacity will be 

demonstrated. Conditions (4) and (5) can be auto- 
matically satisfied for the following source term 
S* = Sr-pG(T- T*)(aT/at), as it is shown in refs. 
[I 33151 for the Stefan problem (that is, for pure sub- 

stances solidification). Here ST denotes sources which 
are not connected with the latent heat release during 
the phase change. Secondly, for the alloys solidifi- 

cation the source term can be written as S* = 
S’-pL(dY/dT) (see, for instance, [l]). Now equa- 
tion (6) can be rewritten as follows : 

L3T 
PC,, (7; + (v, grad) T 

> 
= div (kgrad T) + ST, (7) 

where 

[ C+ L6( T- T*) for pure substances, 

c,r = 

i 
C+LFT for alloys. 

(8) 

Numerical solution of PDEs with a coefficient 
including the Dirac function needs the development of 
special numerical techniques. Therefore, the enthalpy 
function h can be introduced and instead of equation 
(7) we can consider 

p 
( 

g + (v, grad)h 
> 

= div (k grad T) + ST (9) 

where 

h = 
s 

7 
C,dT, T< T*, (10) 

0 

s 

I- 
h = h(T*)+L+ C,dT+L, T> T*. (11) 

7‘. 

Merits and demerits of numerical techniques, based 
on equations (7) and (9) are discussed in many papers 
(basically for the pure heat conduction). In particular, 
various approaches for smearing the enthalpy dis- 
continuity in equations (7) and (9) and their influence 
on the solution accuracy are examined in ref. [16]. In 

the present paper we shall not discuss this topic, refer- 
ring readers to the extensive review [4] for more details. 

2.2. Momentum and continuity equation 
Now consider the models describing convective 

motion of a melt. The Navier-Stokes equations for a 
laminar incompressible viscous flow can be written 

as : 

apv at + div (pvv) = 2div (~0) -grad P 

-grad(($p-p’)divv)+S’ (12) 

ap 
at +div (pv) = 0. (13) 

The Boussinesq approximation is in common use to 
describe convective motion of a melt. In this case we 

have : 
^ 
z+(v,grad)v= -$gradP+div(vgradv)+S’ 

(14) 

divv = 0. (15) 

Stream function-vorticity variables (t/j, w) are usu- 
ally preferred in computational fluid dynamics for 

solving 2D problems-see, for example, [7-l 11. Thus, 
instead of equations (14) and (15) in primitive vari- 
ables (velocity-pressure), the following equations in 
the (I/, w)-formulation can be used : 

am 
at + (v, grad)w = div (v grad w) + S” (16) 

A$=-w (17) 

where Q = rot v, Iz = (0, 0, w), v = rot Y, Y = 
(0, 0, II/). In some instances one can employ the fourth- 
order stream function equation : 

aA* 
x-+(v,grad)A$ = div(vgradA$)+Stb. (18) 

Note, that the computational aspects of the usage 
of various Navier-Stokes equations formulations are 

widely analyzed in the literature (e.g. [7-l 1, 17, 181) 
and therefore they will not bediscussed here. It is 
more important for us to highlight existing models of 
melt motion for a mushy region. The simplest model 
is based on the so-called porous medium approach. 
In this case a mushy region is considered as a porous 

medium and the Darcy-Boussinesq equations are util- 
ized to describe here a melt flow. Note, that in such 
models the emphasis is on the determination of a 
relationship between permeability and species volume 
fraction. 

For convenience of presentation we shall discuss 

different numerical techniques for prediction of con- 
vection/diffusion phase change on the test problem of 
metal (or alloy) solidification in a rectangular cavity 
cooled from the right side, whereas the top and bot- 
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i aT/a y=o l-l(t) 

T=Tc T=T h 

Frc; I 

tom arc thermally insulated (see Fig. I). It is cleal-. 

that only a smooth boundary exists between solid and 
liquid phases when one considers the pure substance 

solidification. Moreovcr. if one considers the classical 
Stefan problem (without convection) with the above 
mentioned boundary conditions. the phase change 
interface will be plain and parallel to the axis (I!,. So. a 
distinction between computed phase change intcrfacc 
for the convection/diffusion problem and the plain 
interface for the classical Stefan problem will 
demonstrate the impact of melt convection on hca~ 
transfer. 

3. SOLUTION OF HEAT CONDUCTION 

EQUATION WITH PHASE CHANGE 

Now we briefly discuss numerical methods for the 
solution of the phase change problems when con- 
vection is negligible and can be ignored. 

The Stefan problem has been investigated by man) 

authorsPsce, for instance. monographs [I 5. IO 221. 
This problem can only be solved analytically in the 
simplest cases (c.g. [13. 231) and so in most casts it 
has to bc calculated numerically. Numerical methods 
for solving such problems with free (unknown) 
boundary [24] can he generally divided into IWO 
groups. The first group consists of algorithms with 
explicit capturing of the unknown phase change inter- 
face (such methods sometimes are called ‘variable grid 
(or domain) methods’). The second group includes 

the methods without intcrfacc fitting which are based 
on smearing a free boundary in sonic fashion (fol- 
lowing [3, 41 we will call them ‘fixed grid nun-mica1 

methods’). 

As was mentioned above, in the numerical methods 
from this group the exact location of the phase change 
interface is evaluated on a grid at every time-level. In 

these methods a phase change interface is captured in 
some grid point (dynamical, interface-fitting grids arc 
employed). Therefore. it is necessary to utilize grids 
with a non-uniform spacing in the methods of this 

group. 
Solving ID problems one can choose another 

approach. To capture phase change interface in this 
case, we can use a uniform spatial grid, but a non- 
uniform time-step. Such an approach (fitting a phase 
change boundary in a node of a spatial grid using a 
variable time-step) is suggested in refs. [25. 261. Let 

us note. that this approach has been repcartdly 
employed to solve two-phases and multi-phases ID 
problems. but it is not applicable for the solution 01 
multidimensional prohlcms. 

The most widespread variable methods arc hascd 
on the dynamical grids. whcro some lixcd gl-id nodes 

m~\e wit11 the phase change boundary during <I tlrnc 

evolution and other ncides arc dvnalllicallv I-‘cior1- 

structcd at cvcry tmle-level. Such an approach IS WY- 
gcsLcd in rcl.5. [Y. I%]. From lhc nc\\ L%oi-ks in thy’, 
field WC shall point out ~hc \+‘oI h /?‘ij_ M h2rc Illi* 
approach is applied for 2D PI-oblen~~ iix~np :I in,&~ii 
tcchniyue lor grid adaptation 

A special ltiaturc of the Stcfan and Sict;m-like prob- 
lcmb arc rro:i-ullitorni conditions C.:) (5). relating i\50 

phases. ,I\ numerical method. based on the sm~pl~: 
layer polcnlial theory is dcvclopcd in refs. [?I). -3 I ] 
to implcmcnt these conditions more precisely. Marc 

dctuts ol‘lhis class of methods a~-c prcsenwd In mono- 
graph [31]. 

IJsagc of kariablc grid numerical methods to ~lvc 
multidimensional phase change problems is algo- 
rithmically complicated and leads to large com- 
putatlorlal cost, so fixed grid numerical methods arc 
in common use for solving such problems. &ginning 
with the Icorks of Samarskii and Moisccnko 1331 and 
Budak (‘r 01’. 1341 for the temperature ibrmulation (7) 
and with the work [35] for the cnthalpy formulation 
(9) a nurnher of fixed grid numerical methods have 

hccn developed and applied I‘or studying pure con- 
ductlon phase change problems. The essence of thz 
method suggcstcd in ref. [33] lilr the solution ill‘ tl~c 
Stcfan problem is the introduction of theel~ccct~~c hc;tt 
capacity In\tcad 01’ 

i ‘r 
ij(i‘~t f,(i(P 7‘*)) i, = di\ (/\ grad T) (19) 

the next equation is to be solved 

il 
f,c” (,/ = div (k grad I ). (70) 

Effective heat capacity c’is chosen Urom the condition 
ol‘ cncrpy conscrcation o\cr sonic lcnipcraturc IIILCI 
val. including tenipcraturc ol‘ phase change : 

*I ,‘i ( 
(c’ i-/,ii~Tp T*j)u- C( 7 ) d 7‘. t : I ) 

.i s, 

For example. one can set 

More details of choosing the value of q in the above 
equation are discussed in ref. [33] along with some 
difYerent approximations for ?‘. Note, that some varl- 
ants of the enthalpy formulation for the Stefan prob- 
Icm are practically identical to the method [33] ~+xc. 
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for example, review [3, p. 1821. At the end of this 
paragraph it is useful to point out that one can find 
a comprehensive review of publications in English 
connected with this topic in the above mentioned 
work [4]. 

4. PREDICTION OF CONVECTION/DIFFUSION 

PHASE CHANGE. VARIABLE GRID METHODS 

For convenience we shall divide methods of this 
group into some subgroup. To the first subgroup we 
shall refer the methods which are based on a trans- 
formation of the considered irregular physical domain 
onto a rectangular one introducing new independent 
variables. The second subgroup includes the methods 
based on unstructured or deforming grids in the initial 
physical domain. Finally, to the last subgroup we shall 
refer local adaptation methods. It is clear that there 
are many common features between all these groups 
and a particular numerical algorithm can be con- 
sidered variously. 

4.1. Domain transformation techniques 
Nowadays a great deal of numerical algorithms for 

the solution of 2D convection/diffusion phase change 
problems with moving free boundary use a trans- 
formation of the domain, occupied by a melt (i.e. 
liquid phase). Doing so, new independent variables 
have to be introduced. An example is conformal map- 
ping of the initial irregular domain. It is necessary 
to point out that we must consider transient (time- 
dependent) calculation domain transformation (at 
every time-level of computations) since the domain 
occupied by a melt is evolving in time. Various 
numerical techniques, say, FDM or FEM, can be 
employed for solving transformed equations. 

Let us demonstrate this approach applying it to 
our test problem and using stream function-vorticity 
formulation of the Navier-Stokes equations (16) and 
(17) in Cartesian coordinates. In this case the domain 
G*(t) occupied by a liquid phase at the moment t can 
be transformed into a regular domain R via intro- 
ducing new variables 5 = 5(x, y, t) and q = q(x, y, t). 
Following the above mentioned assumptions the 
transformed vorticity equation can be written as 

i 
+- 

( 
ay ax ax ay am I a(u01) 1 a(va) 

J 
----- -+-- ag at ) ag at all J a< +tSq- 

2!&.$J!z)) 

(23) 

Metric coefficients IX, fi, y, velocity components u, v 
and Jacobian J are defined as 

(26) 

(28) 

Other transformed equations can be derived in a simi- 
lar way. 

Particular emphasis must be placed on the fact that 
in the general case construction of mapping 5 = 
5(x, y, t) and r) = ~(x, y, t) is a very important and 
complicated problem itself. This transformation can 
be defined explicitly only for the simplest cases. Say, 
it can be simple stretching lengthwise of one of the 
spatial coordinates. From the viewpoint of grid gener- 
ation (see, for instance [8, 9, 36, 371) this simple 
approach corresponds to algebraical methods for 
grid generation. In general cases it is necessary to 
solve a couple system of PDEs at every time-level for 
grid constructing [36-381. This procedure can require 
more computational cost than solving the transport 
equations themselves. That is why some additional 
assumptions are utilized to simplify determination of 
transformation t = 5(x, y, t) and Y) = ~(x, y, t). 

Concerning convection/diffusion phase change 
problems general type transformations 5 = 5(x, y, t) 
and q = ~(x, y, t) have been used in refs. [39, 401. 
This approach is also employed in ref. [41] for the 
numerical study of solidification of a water filled 
porous medium. 

Let us return now to the above mentioned test prob- 
lem (see Fig. 1). In this particular case the domain 
occupied by a liquid phase is a curvilinear quadrangle 
with three fixed and one free boundaries. It allows 
us to use the simplest non-uniform stretching of the 
domain G*(t) lengthwise of the direction x with a 
stretching coefficient depending on the coordinate y. 
The resulting calculation domain in this case is the 
rectangle R, R = {(g, q): 0 < 5 G 1, 0 < rl < H}. 
Taking into account that (@/a{) = 0 and 
c = 5(x, y, t), q = q(x, y, t) are defined explicitly 
there is no problem to transform equation (23) and 
other equations for this test problem. 

Amongst the first papers where this simplified algo- 
rithm has been used for the solution of the test prob- 
lem are refs. [42, 431. The so-called quasi-stationary 
approach was employed in these works: it was 
assumed that the phase change interface was frozen 
between two discrete time moments t and t+At and 
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so it is evaluated from the Stcfan condition only at 
these discrete moments. A FDM approach has been 
used there to discretize the equations. The numerical 
algorithm was based on an alternating direction 
implicit (ADI) method for parabolic equations and a 
successive overrelaxation (SOR) method for the dis- 
crete elliptic stream function equation. It should be 
noted that the ‘stretching’ approach can bc 
implemented using any other suitable finite-differcncc 
numerical methods for solving problems of math- 
cmatical physics (e.g. [44 471). Viskanta and co- 

workers have utilized this approach for prediction ot 
solidification and melting of a number of various 
concrete materials. Fine agreement with mcasurcd 

data have been obtained in these numerical cxpcr- 
iments [48. 491. 

A similar approach is applied in ref. [50] to solve 
heat and mass transfer equations in a single phase 
(liquid) and two-phase (liquid + vapor) regions for a 
test problem involving boiling and natural convection 

in a porous medium. We shall highlight some other 
works applying this approach to the problems of prac- 
tical interest. The ice melting process in a porous 
cavity heated from below is investigated numerically 
in ref. [51]. Numerical analysis is presented in ref. 
[52] for horizontal solidification of binary alloys in a 

rectangular enclosure involving mutual diffusion 01 
species (thermal and solutal convection arc con- 
sidered). Pure metal melting near a hot vertical wall 
is studied in ref. [53]. Influence of buoyancy-driven 
and thcrmocapillary (Marangoni) convection on put-c 
metal solidification is discussed in ref. [54]. A para- 
metric investigation of thermal and hydrodynamic 
fields is presented in ref. [55] for zonal melting of 

NaNO?. Numerical study of pure substance melting 
involving convection has been conducted in ref. [56]. 
whereas analysis of influence of thermal and Maran- 
soni convection on pm-c metal solidilication has been 

done in ref. [57]. 
As noted above. the quasi-stationary approach has 

been used in cited papers a phase change interface 
is frorcn at time betv,cen I and / + Ar and its nc\\ 

location at the time moment I +At is evaluated from 
the Stepdan conditions (4). (5) and the updated tem- 
perature field after the determination of all other var- 
ables. It is clear that thcrc is some time-step restriction 
in this approach with phase change interface freezing 

due (0 its cxplicil property. A more cfficicnt approach 
is developed in ref. [58], where the location of phase 
change interface is calculated simultaneously with all 
other governing equations in an implicit fashion. A 
much higher time-step can bc used in this cast. 

Contrary to the previous group with explicit cap- 
turing of a phase change interface WC now consider 
numerical methods which arc based on the solution 
of the initial (non-transformed) equations using 
unstructured deforming grids. Note that distinctions 
bctwecn the previous and currently considered sub- 

groups often exist only during the discretization 01’ 
differential equations and the same difference equa- 

tions can be obtained in both cases. 
A new approach with an unstructured interface- 

fitting grid to bc designed at every lime-lcvcl is 

dcscribcd in ref. [59]. A control volume method is 
used to obtain an implicil diffcrcncc scheme. It should 
bc noted that the cells adjacent to the intcrcdcc in 
a liquid phase are triangular whereas all others arc 

rectangular. Calculations at every time-level are pcr- 
formed as follows : first, a new phase change interlice 
location is cvdluated from the Stcfan conditions (quasi- 
stationary approach). secondly. a new grid is gen- 

crated, thirdly. the values of variables arc interpolated 
on the new grid and so on. Development of the above 
mentioned method is continued in ref. [60]. Note that 
deforming finite elements can also bc used for dis- 
crcti/ation of PDEs. Such an approach is cmplo!cd 
in ref. [hl 1. 

Hcrc wc shall briefly discuss the uorks whcrc a 

phase change intcrfacc is dclcrmincd cxplicitll and 
governing equations arc accurately npproximntcd 
near to the intcrfacc points of ;I fixed grid. For 
cxamplc, such an algorithm is proposed in ref. [62]. 

where laser melting processes arc considered. A bit 
simpler and therefore less accurate technique, based 
on the SIMPLE procedure. is described in rcfs. [Ki. 

641. One of the basic assumptions used in these Lcorkx 
is that velocity components have small values in the 

vicinity of an interface and therefore convection can 
be neglected there. A similar algorithm has been ~iscd 
in rcfs. [65-671. In fact the essence of this approach is 
that a smooth phase change interface is approximated 
by a polygonal line through the grid points. 

Numerical methods with composite grids can bc 
also considered in the framework of this subgroup 

(see, for instance, [68]). The essence of the composite 
grid tcchniquc is to construct a local moving orthog- 
onal interface-fitting grid in addition to the basic grid 
for a whole computation domain. Some features 01 
the computational implementation of this lechniquc 
arc discussed in ref. [69]. 

5. CONVECTION/DIFFUSION PHASE CHANGE 
PREDICTION. FIXED GRID METHODS 

As already noted. in most papers on numerical 
simulation of convection/diffusion phase change It IS 
assumed that a melt can be considered as an incon- 
pressiblc viscous fluid and a flow is a laminar enc. In 
addition. it is assumed that the density has no changes 
due to phase change and therefore the simplest bound- 
ary condition for the velocity can be used on a phase 
change interface [70]. Considered in this paragraph 
arc numerical methods which we shall divide into large 
subgroups depending on the mathematical models 

used to dcscribc a melt flow in a liquid phase. The 
so-called primitive variables (v&city prcssurc) arc 
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used in the methods belonging to the first subgroup. 

To the second subgroup we shall assign numerical 

methods based on the stream function-vorticity 

formulation. 
Let us note, that different scientists (mainly math- 

ematicians and engineers) consider the mathematical 
modeling of convection/diffusion phase change prob- 
lems from various points of view and use distinct 
terminology and result interpretation for the same 
situation. In this paper we shall consider fixed grid 

numerical methods only from the mathematical view- 
point, although some pure physical reasons can be 
used to describe a solid phase. In our opinion a con- 
venient classification of the fixed grid numerical 
methods can be done using a general approach for 
solving mathematical physics problems in irregular 
domains which is known as the fictitious regions 
method (FRM). The fictitious regions method was 
suggested by Saul’yev in 1960 for solving elliptical 
problems [71]. The essence of this method is described 
in the monograph [72], and a general review of appli- 

cations is presented in ref. [73]. The mostly complete 
description of the fictitious regions method and its 
applications to hydrodynamics problems can be 
found in the monograph [74]. 

5. I. Primitive variables 

We start with the primitive variables formulation 

(u, ~7, P) for solving convection/diffusion phase 
change problems on fixed grids. Two variants of the 
FRM can be constructed in this case : the first of them 
is based on the continuation of the coefficient at lower- 
order derivatives and the second approach uses the 
continuation of the coefficient at the highest-order 
derivatives. Only the first variant has yet been pub- 

lished in connection with numerical simulation of the 
convection/diffusion phase change processes. 

Let us briefly explain the first variant. Instead of 
(14) (15) for the irregular time-dependent domain 
G*(t) we consider for the whole rectangular com- 
putation domain G the following equations : 

2 + (v,, grad) v, = i grad P, 

+ div (v grad v,) - C,v, + Sl (29) 

divv, = 0. (30) 

Here the continuation coefficient C, and the right hand 
side Sl are chosen like this : 

i 

0, 
c, = 

(x,Y) E G*(t), 

a-‘, (x,y) cG/G*(t). 
(31) 

S’, 
SY= o 

(, 

(x,y) E G*(t), 

(x>Y) E G/G*(t) 
(32) 

where E is sufficiently small. It is clear that C, and S: 
can be formulated in various ways for particular prob- 
lems. 

It should be noted that the fictitious regions method 

of the form (29)-(32) is well known and has been used 
for many years. A mathematical validation of the 

method is provided in ref. [75]. More precisely, there 
is obtained the following accuracy estimate for the 
approximate v, and the correct v solutions in this work 
for steady-state and unsteady incompressible viscous 
fluid flow problems : 

//v,-VII < c0nst.s”’ 

in corresponding norms. 

(33) 

In more recent publications this approach is called 

the ‘porous medium model’. Really, the term C,v, in 
equation (29) can be interpreted as the resistance force 
for fluid motion in a porous medium. It is well known 
that eliminating inertia terms we obtain the Darcy- 
Boussinesq equation for a porous medium in the fol- 
lowing form : 

v = - Egrad P. 
F 

(34) 

Combining equations (34) and (14) and continuing 
the coefficient K by zero value in a liquid phase and 
a very high value in a solid phase, we can obtain a 
single equation similar to (29), which describes con- 
sidered processes in the whole domain including liquid 

and solid phases. A similar approach can be applied 
for a two-phase zone too. 

More details of the ‘porous medium model’ are 

presented in refs. [7678], where the enthalpy for- 
mulation is employed for the energy equation and 
pure substance solidification in a cavity is considered. 
The same approach has been used in ref. [79] for the 
investigation of alloy solidification, where the mushy 

region is considered as a porous medium. This 
approach was used by the same authors and their 
colleagues for studying some particular processes. 
Thus, a laminar unsteady pure substance flow through 
cooled tubes is investigated numerically in ref. [80] 
involving solidification on the tube walls. Pure gallium 
melting in a cavity with a heated side wall is calculated 
in ref. [81] and compared with measurements. Pure 
tin solidification is investigated in ref. [82]. Ther- 
mosolutal convection in a liquid phase is considered 
in ref. [83]. 

It is apparent that the ‘porous medium’ model is 
widely used for the numerical simulation of various 
convection/diffusion phase change processes. At the 

same time a number of works are devoted to the 
improvement of the numerical algorithm. The empha- 
sis is on the evaluation of the permeability K (equation 
(34)) in a porous medium and its continuation in a 
solid phase. Numerical results from [84] indicate that 
the predicted thermal field during convection/ 
diffusion phase change essentially depends on the 
evaluation of the effective permeability K and a new 
technique for choosing K is suggested in this work. 
Further, more correct determination of the per- 
meability is developed in ref. [85], where the nature of 
the mushy region is taken into account. It is necessary 
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to note the last works of the same authors in this 
tield [86, 871. It should be noted that the technique 
suggested in ref. [84] is based on the previous works 
performed by Bennon and Incropera. 

Another direction in the developing numerical tech- 
niques for the prediction of convection/diffusion 
phase change is the use of more accurate methods. 
Shyy and Chen [88] presented an algorithm based on 
nonorthogonal coordinates and adaptive grids. Sol- 
idification in a cavity heated from one side has been 

considered using the ‘porous medium’ model. It is 
interesting that Cartesian and curvilinear \zclocitq 

components are used simultaneously in this method. 
Dimensionless equations in this case can be written in 

general form as : 

(I[! i 1,’ 
(y + 

it/ 
= 0. (35) 

-.\- +Ar~+Ra*Pr.$, (37) 

where : 

li = uy,, - l‘.Y,, . (39) 

I; = L‘.Ti -Us’_, (40) 

y , = .I-; +yp;, (41) 

q2 = .X:.Yq + V-1’ . i_ PII (42) 

+ = Xi +_v,z, (43) 

J = x,)‘, - x,,~‘;. (44) 

Note that all improvements in this work are con- 
nected with flow prediction, whereas the simplest lin- 
ear dependence of the liquid phase volume fraction 
on the temperature in a two-phase zone is employed. 

The usage of nonorthogonal coordinates and adaplive 
grids allow more accurate computations of heat and 
tnass transfer at high Grashof nutnbers. A tnulti- 
parametric investigation of dimcnsionlcss equations 

(35) -.(44) at normal and reduced gravity conditions is 
conducted in this paper and rcfs. [89. 901 including 
buoyancy and thermocapillar convection. 

‘The works considered in this paragraph indicate 

that nutncrical melhods developed by difTcrent 

authors for solving convection;diffusion solidification 
prvblcms and based on the ‘porous medium model 
can bc generally interpreted from the mathematical 
viewpoint x H variam of fictitious rcpions methods. 

5.2. Srrtwn filrlc~tion~uorticil,~ forrmlrrtiwl 

As for the fourth-order stream function equation 
for melt flow description, WC recognize three basic 
variants of the fictitious regions method (see ref. [74J 
for more details). The first is based on the con- 

tinuation of the coetlicient at lower-order derivatives. 
the next approach uses the continuation of the 
coefficient at the second-order derivatives and the con- 
tinuation of the coefficient at the fourth-order deriva- 
tivcs is carried out in the last variant. Only the first 
IWO variants can be found in the reviewed literature on 
mathematical modeling ofconvcction,diffusion phase 
change proccsscs. 

In the first variant instead of equation (I 8j in the 

irregular domain G*(r) the following equation is to 
be solved in the whole domain G’ : 

(45) 

where functions C, and SF are defined in just the same 
way as in (31), (32). This approach has been proposed 
in rcfs. [91. 921 for simulation of solidification in a 
cavity with hot and cold vertical walls. The same 

technique is applied in ref. [93] to predict metal sol- 
idification in a mould. 

An example of Ihc second variant of FRM is the 
method I‘rom ref. [94]. This variant can bc considered 
as an cxtcnsion of the ‘porous medium madcl 
approach 111 the stream function \,orlicity l~onnu- 

latiun. In this case instead ofcquation (45) the thlloc\,- 
inp equation is to he solved : 

?Al//, 
i, + (V>. grad)Ar//, 

= div (v grad A$, + C, grad $, ) + Sy (46) 

Note, that this variant of the fictitious regions method 
can be used to model incompressible viscous fluid 
flows in multi-connected domains. 

5.3. Flow prediction in the mush_v rqigion 
Mathematical models of heat and mass transfer 

processes in the mushy region can be based on various 
assumptions [95]. The emphasis here is on describing 
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mushy region processes and the inclusion of inter- 

actions between all existing zones. Starting with sep- 

arate equations for each phase in the mushy region, 

authors carry out space averaging of these equations 
and derive unified continuous equations for the mushy 
region itself. This averaging can be done in different 
ways. To consider the mushy region as a liquid with 
solid inclusions, a variable viscosity model is used in 

some approaches. Another way is based on the 
‘porous medium’ model and a dendritic structure 

assumption for the mushy region. Choosing one or 
another model it is useful to know the behavior of 
metal alloys in mushy region. The review [96] gives a 
good picture of the behavior of different alloys in 

some technological solidification processes. 

numerical simulation of vertical direct solidification 

of dendritic binary alloys. 
In further studying convection/diffusion phase 

change processes and considering the mushy region, 
a hybrid model of the mushy region can be useful. 
Such a hybrid model based on some switching 
between the ‘porous medium’ model and the variable 

viscosity model depending on the solid fraction in the 
mushy region is developed in ref. [ 1081. 

6. CONCLUSIONS 

To consider the mushy region as a porous medium 
(e.g. [97]), the momentum equation can be written as 
(29), (30), but the continuation coefficient C, and the 
RHS instead of (3 l), (32) are to be determined from 
some physical reasons based on the material prop- 

erties. This approach has been used by different 
authors for modeling specific processes and fine agree- 
ment with experimental data has been obtained. 

Wide experience is accumulated in the numerical 

simulation of convection/diffusion phase change pro- 
cesses. Many groups of scientists are now developing 
numerical techniques for phenomena with phase 

change. 

Let us list some applications of this method. Binary 
alloy solidification in a rectangular cavity is inves- 
tigated numerically in ref. [98] in comparison with 

measurements. A comprehensive discussion of 
numerical methodologies for solving PDEs of the 
above mentioned model is done in ref. [99]. A math- 
ematical model and its numerical implementation for 
prediction of the binary mixture NH,Cl-H,O melting 

is presented in ref. [loo], where buoyancy-driven as 
well as surface-tension (Marangoni) convection are 
taken into account. An extended comparison between 

numerical and experimental results for this model can 
be found in ref. [loll. Numerical study of sol- 
idification of the binary solution Na&O, is conducted 
in ref. [102] for annuli between horizontal cylinders. 

It is interesting to point out an application of the 
above mentioned approach for phase change pre- 
diction in geology [103]. A similar ‘porous medium’ 
model has been used in ref. [ 1041 for numerical simu- 
lation of convection/diffusion problems of melting. 
To increase the accuracy of computations on fixed 
rectangular grids. authors perform some correction of 
the coefficients in the vicinity of phase change interface 
for the energy equation using approximate analytical 
values for the thickness of the thermal boundary layer 
and the heat transfer coefficient. 

Most of the mathematical models are based on 

the conventional Boussinesq approximation for the 
Navier-Stokes equation. To improve the models, 
more correct hydrodynamics equations for the con- 
vective phenomena description are to be used. 

Further, it is necessary to consider more precisely 
processes in the vicinity of the phase change interface 
involving density variation through the interface. 
Note that in this case non-zero boundary conditions 
for the melt velocity have to be used at the phase 
change interface. New publications concerned with 

the mushy region model development can be expected. 
Recapitulating all the above discussions, let us note 

once again that the numerical methods for solving 
convection/diffusion phase change problems can be 
divided into two different groups-variable grid 
methods and fixed grid methods. The fixed grid 
numerical methods are algorithmically more simple 
than variable grid techniques. For a long time there 
existed an opinion, that variable grid methods are 
more accurate, but Lacroix and Voller [109] demon- 
strated that the methods from the first and the second 
groups produced at the same order of mesh size prac- 
tically identical solutions in sense of accuracy. From 
a mathematical point of view the fixed grid numerical 
methods can be considered as different variants of the 
fictitious regions method. Respectively, all accumu- 
lated results for this method such as existing, unique- 

ness and accuracy of the solution can be used in the 
mathematical modeling of convection/diffusion phase 
change problems. 

Further developments of the mathematical model It should be noted that there is a distance between 
describing convection/diffusion phase change pro- modern computational mathematics and numerical 
cesses can be found in refs. [105, 1061. As distinct from methods for prediction convection/diffusion phase 
the previous works, spatial variations of the liquid change. In some cases numerical techniques are 
fraction are taken into account in this paper for the employed without any theoretical validation of con- 
mushy region. This model also is based on the ‘porous vergence, accuracy, etc. Unfortunately, it is imposs- 
medium’ assumption and unified equation for- ible to obtain such validation for any problem that 
mulation similar to (29), (30) for all phases-liquid, is to be solved numerically. But in cases where this 
mushy and solid. Continuing the review of the works 
in this field, let us note the paper [107] where the 

validation is possible, it can be used for real decreasing 
of people’s and computer’s efforts in the numerical 

model suggested in refs. [105, 1061 is employed for the solution of these problems. 
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