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Abstract—A review of numerical techniques for the solution of heat and mass transfer problems with
solid/liquid phase change is presented. The mathematical model for a description of a thermal field is based
on the conventional Stefan approximation for the evaluation of phase change and the Navier-Stokes
equations in the Boussinesq approximation for convective flows of a melt. Two basic approaches for the
solution of these problems with a free boundary (phase change interface) are considered. The first approach
is connected with interface-fitting algorithms (referred to in the work as variable grid methods), the
second one with interface-smearing (fixed grid) methods. Fixed grid methods for the investigation of
hydrodynamical phenomena in a varying calculation domain are constructed using various modifications
of a penalty method.

1. INTRODUCTION

NowaDAYs many physical phenomena and tech-
nological processes can be investigated in detail due to
the progress in computer performance and numerical
methods. The number of publications devoted to the
development of numerical methods for solving con-
vection/diffusion phase change conjugate problems
increases every year. In accordance with this fact the
number of papers devoted to the numerical simulation
of various physical and technological problems with
heat and mass transfer including phase change
increases too.

The earliest works on numerical simulation of
phase change problems including convection are con-
cerned with studying different metallurgical processes.
Convection of a liquid metal becomes significant when
the melting or solidification of relatively large metal
volumes is considered [I, 2]. Now con-
vection/diffusion phase change problems arise in
mathematical modeling of metals and alloys casting
or melting, crystal growth, plastic production, energy
accumulation, geology, laser processing of metals, etc.

It is clear that a great deal of publications in this
field need to be analyzed, comprehended and classi-
fied. Therefore, a number of surveys have been issued
recently. In the work of Basu and Date [3] different
formulations and classifications of melting or sol-
idification problems with and without convection are
discussed primarily from the physical viewpoint.
Voller er al. [4] conducted an analysis of fixed grid
numerical methods for prediction of mel-
ting/solidification phenomena without convection
based on the English language literature only. Surveys
of papers devoted to the mathematical modeling and

experimental investigations of crystallization pro-
cesses are published periodically by Viskanta (see for
example [5]). Methodological aspects of the math-
ematical modeling of crystallization processes along
with the quality and possibilities of software existing
in this field are discussed in the survey by Kanan et
al. [6].

The main purpose of the present paper is to discuss
the state-of-the-art in modeling convection/diffusion
phase change using the up-to-date level of applied
and computational mathematics. Most of the works
published in this field will be analyzed, including
papers in Russian which are practically unknown for
readers in English. A number of applications is also
provided.

Investigating convection/diffusion processes during
melting or solidification, the following assumptions
are adopted in the present paper :

e convenient parabolic heat transfer equation
based on the Fourier law is used ;

e Stefan’s conditions take place on the phase
change boundary for pure substance solidification and
various models of a mushy region are employed for
alloys and mixtures solidification ;

e thermal and/or solutal convection in the liquid
phase are governed by the Navier-Stokes equations
in the Boussinesq approximation for laminar flows;

o the density variation due to the phase change is
neglected ;

e a flow in a mushy region is modeled using the
simplest models—say, in the Darcy-Boussinesq
approximation for porous media.

It should be noted that the above mentioned con-
vection/diffusion phase change problems are essen-
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F NOMENCLATURE
C specific heat at constant pressurc £ cxlension parameter in the fictitious ‘
h enthalpy regions method i
k thermal conductivily i v dynamic, volumetric and kinematic

K permeability of a porous medium viscositics
L phasc change enthalpy o density ‘
P pressure o velocity -strain tensor
S source term in transport equations W solid phase volume fraction
t time W stream function ‘
T temperature 0 vorticity.
T* phase change temperaturce ‘
v = (u, v, w) veclocity vector
(x, y.z) Cartesian coordinates. Subscripts |
ef effective value ‘
Greck symbols s. 1 solid and liquid phascs, respectively
A Laplace operator n normal component. j

tially nonlincar ones. First, they arc nonlinear due
to convective terms in the momentum and encrgy
equations. Secondly, thermophysical properties of
considered substances often depend on the tempera-
ture. And finally, nonlincarity in the problems under
consideration is caused by the existence ol a free
boundary—a phase change interface. The location of
the boundary is a priori unknown and depends on
the solution of the considered problem. The first two
kinds of nonlincarity arc well known and widely dis-
cussed in the literature on numerical methods for com-
putational fluid dynamics and thermophysics. A host
of papers and monographs is devoted to these non-
linearities of common knowledge (c.g. [7-11]) and so
these points will be omitted here.

The present paper is organized as follows. The basic
equations governing the heat and mass transfer and
phase change are presented in the second part. In the
third part a short review is given on existing numerical
methods for solving the pure heat conduction
equation, describing melting or solidification prob-
lems without convection. Numerical methods based
on the interface-fitting technique are discussed in the
fourth part along with their applications to con-
vection/diffusion phase change problems of practical
interest. The fifth part covers the fixed grid numerical
methods for solving convection/diffusion phasc
change problems as well as their application to several
physical and technological processes. The last part is
devoted to some conclusions.

2. GOVERNING EQUATIONS

The equations under the consideration governing
the heat and mass transfer processes during the liqui-
dus—solidus and solidus—liquidus phase change are
based on the conservation laws for the energy, mass
and momentum [12]. Hereinafter in the work we shall
write ‘solidification” meaning that melting is governed

by the same cquations as soliditication. Concerning
the solidification processes we shall consider the Ste-
fan problem for pure substances. that is, the phase
change occurs at fixed temperature 7 = T* and there
is a smooth phase change boundary I'(¢) in this case.
On the other hand, considering alloys and mixtures
which solidify in a temperature interval, we shall take
into account the existence of a spatial mushy (solid
and liquid) region between solid and liquid phases.

2.1, Eneryy equation

The temperature field in the solid phase is governed
by usual heat equation:

L 0T, ) ) vvl
pCo o =divik grad T)+ 5. (1

In general form the convection/ditfusion heat trans-
fer cquation for the liquid and mushy (if it exists)
regions can be written as follows :

cT
pC, (€ “ll + (v, grad)Tl) =div(k,grad T))+S/.
4

(2)

For pure substances the temperature on a smooth
phase change interface I'(r) is fixed and equal to a
constant temperature of phase change:

) = {(x.p. )| T(x.p.z0) = T, (M

This relation can be used to determine this boundary.
Standard Stefan boundary conditions (continuity ol
the temperature and jumping of the heat flux) arc
satisfied on this boundary:

[T]1 =0, (x.y.oyel). (4

cT
[/\' . } = —plLV,,
cn

Here [¢] stands for the jump of the quantity ¢ through

(x,v.0)el(4). (5)
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I'(¢r) from the solid phase to the liquid one. Note that
conditions (4) and (5) can be implemented in the heat
conduction equation via a suitable source term. In
this case instead of equations (1)—(5) one can consider
a single equation, governing the convection/diffusion
heat transfer in the whole considered domain—solid,
mushy and liquid regions:

oT
pC(E + (v, grad) T) =div(kgrad T)+ S*.

O

Clearly the velocity v is identically equal to zero v = 0
in the solid phase. Equation (6) can be used for cal-
culating solidification of pure substances as well as
alloys by means of appropriate source term S*. Let
us consider these possibilities in more detail.

First, usage of the effective heat capacity will be
demonstrated. Conditions (4) and (5) can be auto-
matically satisfied for the following source term
S* = 8T —pL6(T—T*)(0T/dt), as it is shown in refs.
[13-15] for the Stefan problem (that is, for pure sub-
stances solidification). Here S” denotes sources which
are not connected with the latent heat release during
the phase change. Secondly, for the alloys solidifi-
cation the source term can be written as S* =
ST—pL(d¥/dT) (see, for instance, [1]). Now equa-
tion (6) can be rewritten as follows:

cT
pC. (;; + (v, grad) T) =divikgrad T)+S", (7)

where
C+L6(T—T*) for pure substances,
Co= d¥ )
C+Ld~T for alloys.

Numerical solution of PDEs with a coefficient
including the Dirac function needs the development of
special numerical techniques. Therefore, the enthalpy
function 4 can be introduced and instead of equation
(7) we can consider

oh
p (%t +(, grad)h) — div(kgrad T)+S7  (9)
where

;
h:J C.dT, T<T*, (10)

0

s

h=h(T*)+L+f C,dT+L, T>T* (1)

7

Merits and demerits of numerical techniques, based
on equations (7) and (9) are discussed in many papers
(basically for the pure heat conduction). In particular,
various approaches for smearing the enthalpy dis-
continuity in equations (7) and (9) and their influence
on the solution accuracy are examined in ref. [16]. In

4097

the present paper we shall not discuss this topic, refer-
ring readers to the extensive review [4] for more details.

2.2. Momentum and continuity equation

Now consider the models describing convective
motion of a melt. The Navier—Stokes equations for a
laminar incompressible viscous flow can be written
as:

d
% +div (pvv) = 2div (uo) —grad P

—grad (Gu—uw)divy)+SY (12)
3‘p

2 +div (pv) = 0.

(13)
The Boussinesq approximation is in common use to
describe convective motion of a melt. In this case we
have:

0 1
g + (v, grad)y = — I/)grad P+div(vgradv)+ S

(14)
(15)

Stream function—vorticity variables (i, w) are usu-
ally preferred in computational fluid dynamics for
solving 2D problems—see, for example, [7-11]. Thus,
instead of equations (14) and (15) in primitive vari-
ables (velocity—pressure), the following equations in
the (i, w)-formulation can be used :

divv = 0.

0
a—cf + (v, gradyo = div (vgrad w) +5°  (16)

AY =~ (17)

where Q=rot v, Q=(0, 0, w), v=rot ¥, ¥ =
(0,0, ¥). In some instances one can employ the fourth-
order stream function equation :

oAy .
5, T (v erad)Ay = div(verad Ay)+5%. (18)

Note, that the computational aspects of the usage
of various Navier-Stokes equations formulations are
widely analyzed in the literature (e.g. [7-11, 17, 18])
and therefore they will not be-discussed here. It is
more important for us to highlight existing models of
melt motion for a mushy region. The simplest model
is based on the so-called porous medium approach.
In this case a mushy region is considered as a porous
medium and the Darcy-Boussinesq equations are util-
ized to describe here a melt flow. Note, that in such
models the emphasis is on the determination of a
relationship between permeability and species volume
fraction.

For convenience of presentation we shall discuss
different numerical techniques for prediction of con-
vection/diffusion phase change on the test problem of
metal (or alloy) solidification in a rectangular cavity
cooled from the right side, whereas the top and bot-
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tom are thermally insulated (see Fig. 1). It is clear,
that only a smooth boundary exists between solid and
liquid phases when onc considers the pure substance
solidification. Morcover, if onc considers the classical
Stefan problem (without convection) with the above
mentioned boundary conditions, the phase change
interface will be plain and parallel to the axis 0y. So, a
distinction between computed phase change interface
for the convection/diffusion problem and the plain
interface for the classical Stefan problem wiil
demonstrate the impact of melt convection on heat
transfer.

3. SOLUTION OF HEAT CONDUCTION
EQUATION WITH PHASE CHANGE

Now we briefly discuss numerical methods for the
solution of the phase change problems when con-
vection is negligible and can be ignored.

The Stefan problem has been investigated by many
authors—see, for instance. monographs [15. 19-22].
This problem can only be solved analytically in the
simplest cases (e.g. [13, 23]) and so in most cascs it
has to be calculated numerically. Numerical methods
for solving such problems with frec (unknown)
boundary [24] can be generally divided into two
groups. The first group consists of algorithms with
explicit capturing of the unknown phase change inter-
face (such methods sometimes are called ‘variable grid
(or domain) methods’). The second group includes
the methods without interface fitting which are based
on smearing a free boundary in some fashion (fol-
lowing [3, 4] we will call them “fixed grid numerical
methods’).

3.1. Variable grid methods

As was mentioned above, 1n the numerical methods
from this group the exact location of the phase change
interface is evaluated on a grid at every time-level. In
these methods a phase change interface is captured in
some grid point (dynamical, interface-fitting grids are
employed). Therefore, it is necessary to utilize grids
with a non-uniform spacing in the methods of this
group.

Solving 1D problems onc can choose another
approach. To capturc phase change interface in this
case, we can use a uniform spatial grid, but a non-
uniform time-step. Such an approach (fitting a phase
change boundary in a node of a spatial grid using a
variable time-step) is suggested in refs. [25, 26]. Let
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us note, that this approach has been repeatedly
cmployed to solve two-phases and multi-phases 1D
problems. but it is not applicable for the solution of
multidimensional probicms.

The most widespread variable methods are based
on the dynamical grids. where some fixed grid nodes
move with the phase change boundary during u time
cvolution and other nodes are dynamically recon-
structed at every time-level. Such an approach 1s sug-
gested inorefs. {27, 28], From the new works in this
field we shall point out the work [29]. where this
approach is applied for 2D problems using 4 modern
technique lor grid adaptation.

A special feature of the Stefan and Stefan-like prob-
lems are non-uniform conditions (3)- (5. relating two
phascs. A numerical method. based on the simple
layer potential theory is developed in refls. {30, 31}
to implement these conditions more precisely. More
details of this class ol methods are presented in mono-
graph [32].

3.2, Fixed grid methods

Usage of variable grid numerical methods to solve
multidimensional phase change problems is algo-
rithmically complicated and leads to large com-
putational cost, so fixed grid numerical methods are
in common use for solving such problems. Beginning
with the works of Samarskii and Moiscenko [33] and
Budak er of. [34] for the temperature formulation (7}
and with the work [33] for the enthalpy formulation
(9) a number of fixed grid numerical methods hiave
been developed and applied for studying pure con-
duction phase change problems. The essence of the
method suggested in ref. [33] for the solution of the
Stefan problem is the introduction of the effective heat
capacity. Instead of

T
D(CH LO(T—T#)) (“1 = divikgrad T)  (19)
-

the next equation is to be solved

~T -
pC ;= div (k grad 1').

p (20)
Effective heat capacity C is chosen {rom the condition
ol energy conservation over some temperature inter-
val. including temperature of phase change
pre o
(CA LT —T*)HdT =

i i

W i &

C(rydT. 2h
For example, one can sct
C=C+ . (22)

More details of choosing the value of i in the above
equation are discussed in ref. [33] along with some
different approximations for €. Note, that some vari-
ants of the enthalpy formulation for the Stefan prob-
lem are practically identical to the method [33]-—see.
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for example, review [3, p. 182]. At the end of this
paragraph it is useful to point out that one can find
a comprehensive review of publications in English
connected with this topic in the above mentioned
work [4].

4. PREDICTION OF CONVECTION/DIFFUSION
PHASE CHANGE. VARIABLE GRID METHODS

For convenience we shall divide methods of this
group into some subgroup. To the first subgroup we
shall refer the methods which are based on a trans-
formation of the considered irregular physical domain
onto a rectangular one introducing new independent
variables. The second subgroup includes the methods
based on unstructured or deforming grids in the initial
physical domain. Finally, to the last subgroup we shall
refer local adaptation methods. It is clear that there
are many common features between all these groups
and a particular numerical algorithm can be con-
sidered variously.

4.1. Domain transformation techniques

Nowadays a great deal of numerical algorithms for
the solution of 2D convection/diffusion phase change
problems with moving free boundary use a trans-
formation of the domain, occupied by a melt (i.e.
liquid phase). Doing so, new independent variables
have to be introduced. An example is conformal map-
ping of the initial irregular domain. It is necessary
to point out that we must consider transient (time-
dependent) calculation domain transformation (at
every time-level of computations) since the domain
occupied by a melt is evolving in time. Various
numerical techniques, say, FDM or FEM, can be
employed for solving transformed equations.

Let us demonstrate this approach applying it to
our test problem and using stream function—vorticity
formulation of the Navier-Stokes equations (16) and
(17) in Cartesian coordinates. In this case the domain
G*(t) occupied by a liquid phase at the moment ¢ can
be transformed into a regular domain Q via intro-
ducing new variables £ = &(x, y, 1) and 5 = n(x, y, 1).
Following the above mentioned assumptions the
transformed vorticity equation can be written as

do 1(oxdy dyox\ow
ot

on ot on ar) oF
L ox dxdyyio 10(Uw) 13(Vo)
J\eear "oty e YT e

_l 0 (Pr{ dw Jw
REVAN T

10 /[Pr ow Jw . @
(23)
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Metric coefficients «, f, y, velocity components u, v
and Jacobian J are defined as

(G @) e
Y= (g%)z + (?é—)z, (26)
u=%, v=—~aa%, 27
Other transformed equations can be derived in a simi-

lar way.

Particular emphasis must be placed on the fact that
in the general case construction of mapping ¢ =
&(x, p, 1) and n = n(x, y,t) is a very important and
complicated problem itself. This transformation can
be defined explicitly only for the simplest cases. Say,
it can be simple stretching lengthwise of one of the
spatial coordinates. From the viewpoint of grid gener-
ation (see, for instance [8, 9, 36, 37]) this simple
approach corresponds to algebraical methods for
grid generation. In general cases it is necessary to
solve a couple system of PDEs at every time-level for
grid constructing [36-38]. This procedure can require
more computational cost than solving the transport
equations themselves. That is why some additional
assumptions are utilized to simplify determination of
transformation & = &(x, y, t) and n = y(x, y, 1).

Concerning convection/diffusion phase change
problems general type transformations & = {(x, y, #)
and # = 5(x, y,t) have been used in refs. [39, 40].
This approach is also employed in ref. [41] for the
numerical study of solidification of a water filled
porous medium.

Let us return now to the above mentioned test prob-
lem (see Fig. 1). In this particular case the domain
occupied by a liquid phase is a curvilinear quadrangle
with three fixed and one free boundaries. It allows
us to use the simplest non-uniform stretching of the
domain G*(¢) lengthwise of the direction x with a
stretching coeflicient depending on the coordinate y.
The resulting calculation domain in this case is the
rectangle @, Q={(,n): 0<¢{<1, 0<n<g H}.
Taking into account that (0y/0f)=0 and
E=¢(x,y,1), n=mn(x,y,t) are defined explicitly
there is no problem to transform equation (23) and
other equations for this test problem.

Amongst the first papers where this simplified algo-
rithm has been used for the solution of the test prob-
lem are refs. [42, 43]. The so-called quasi-stationary
approach was employed in these works: it was
assumed that the phase change interface was frozen
between two discrete time moments 7 and ¢+ A¢ and
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so it is evaluated from the Stefan condition only at
these discrete moments. A FDM approach has been
used there to discretize the equations. The numerical
algorithm was based on an alternating direction
implicit (ADI) method for parabolic cquations and a
successive overrelaxation (SOR) method for the dis-
crete elliptic stream function equation. It should be
noted that the ‘stretching’ approach can be
implemented using any other suitable finite-difference
numerical methods for solving problems of math-
ematical physics (c.g. [44-47}). Viskanta and co-

workers have utilized this approach [or prediction of

solidification and melting of a number of various
concrete materials. Fine agreement with measured
data have becn obtained in these numerical exper-
iments [48, 49].

A similar approach is applied in ref. [S0] to solve
heat and mass transfer equations in a single phase
(liquid) and two-phase (liquid + vapor) regions for a
test problem involving boiling and natural convection
in a porous medium. We shall highlight some other
works applying this approach to the problems of prac-
tical interest. The ice melting process in a porous
cavily heated {from below is investigated numerically
in ref. [S1]. Numerical analysis is presented in ref.
[52] for horizontal selidification of binary alloys in a

rectangular enclosure involving mutual diffusion of

species (thermal and solutal convection are con-
sidered). Pure metal melting near a hot vertical wall
is studied in ref. [53]. Influence of buoyancy-driven
and thermocapillary (Marangoni) convection on pure
metal solidification is discussed in ref. [54]. A para-
metric investigation of thermal and hydrodynamic

fields is presented in ref. [55] for zonal melting of

NaNO;. Numerical study of pure substance melting
involving convection has been conducted in ref. [56],
whereas analysis of influence of thermal and Maran-
goni convection on pure metal solidification has been
done in ref. [57].

As noted above. the quasi-stationary approach has
been used in cited papers -a phase change interface
is frozen at time between ¢ and 7+ A7 and its new
location at the time moment 7+ Az is evaluated {rom
the Stefan conditions (4). (5) and the updated tem-
perature field after the determination of all other vari-
ables. Tt is clear that there is some time-step restriction
in this approach with phase change interface freezing
due (o its explicit property. A more efficient approach
is developed in ref. [58], where the location of phase
change interface is calculated simultaneously with all
other governing cquations in an implicit fashion. A
much higher time-step can be used in this case.

4.2. Unstructured deforming grids

Contrary to the previous group with explicit cap-
turing of a phase change interface we now consider
numerical methods which are based on the solution
of the initial (non-transformed) ecquations using
unstructured deforming grids. Note that distinctions
between the previous and currently considered sub-
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groups often exist only during the discretization of
differential equations and the same difference equa-
tions can be obtained in both cases.

A new approach with an unstructured interface-
fitting grid to be designed at every time-level is
described in ref. [59]. A control volume method is
used to obtain an implicit difference scheme. It should
be noted that the cells adjacent to the interface in
a liquid phase are triangular whereas all others are
rectangular. Caleulations at every time-level are per-
formed as follows : first, a new phase change interface
location is evaluated from the Stefan conditions (quasi-
stationary approach), sccondly. a new grid is gen-
crated, thirdly. the values of variables are interpolated
on the new grid and so on. Development of the above
mentioned method is continued in ref. [60]. Note that
deforming finite elements can also be used for dis-
cretization of PDEs. Such an approach is employed
in rel. [ol].

4.3. Locual adaptation methods

Here we shall briefly discuss the works where a
phasc change interface is determined explicitly and
governing cquations arc uaccurately approximated
near to the interface points of a fixed grid. For
example, such an algorithm is proposed in ref. [62].
where laser melting processes are considercd. A bit
simpler and therefore less accurate technique, based
on the SIMPLE procedure. is described in refs. [63.
64]. One of the basic assumptions uscd in these works
is that velocity components have small values in the
vicinity of an interface and therefore convection can
be neglected there. A similar algorithm has been used
in refs. [65-67]. In fact the essence of this approach is
that a smooth phase change interface is approximated
by a polygonal line through the grid points.

Numerical methods with composite grids can be
also considered in the framework of this subgroup
(see, for instance, [68]). The essence of the composite
grid technique 1s to construct a local moving orthog-
onal interface-fitting grid in addition to the basic grid
for a whole computation domain. Some features ol
the computational implementation of this technique
are discussed in ref. [69].

5. CONVECTION/DIFFUSION PHASE CHANGE
PREDICTION. FIXED GRID METHODS

As already noted. in most papers on numerical
simulation of convection/diffusion phase change it ts
assumed that a melt can be considered as an incom-
pressible viscous fluid and a flow is a laminar one. In
addition. it is assumed that the density has no changes
due to phase change and therefore the simplest bound-
ary condition for the velocity can be used on a phasc
change interface [70]. Considered in this paragraph
are numerical methods which we shall divide into large
subgroups depending on the mathematical models
used to describe a melt flow in a liquid phase. The
so-called primitive variables (velocity--pressure) ure
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used in the methods belonging to the first subgroup.
To the second subgroup we shall assign numerical
methods based on the stream function—vorticity
formulation.

Let us note, that different scientists (mainly math-
ematicians and engineers) consider the mathematical
modeling of convection/diffusion phase change prob-
lems from various points of view and use distinct
terminology and result interpretation for the same
situation. In this paper we shall consider fixed grid
numerical methods only from the mathematical view-
point, although some pure physical reasons can be
used to describe a solid phase. In our opinion a con-
venient classification of the fixed grid numerical
methods can be done using a general approach for
solving mathematical physics problems in irregular
domains which is known as the fictitious regions
method (FRM). The fictitious regions method was
suggested by Saul’yev in 1960 for solving elliptical
problems [71]. The essence of this method is described
in the monograph [72], and a general review of appli-
cations is presented in ref. [73]. The mostly complete
description of the fictitious regions method and its
applications to hydrodynamics problems can be
found in the monograph [74].

5.1. Primitive variables

We start with the primitive variables formulation
(u,v, P) for solving convection/diffusion phase
change problems on fixed grids. Two variants of the
FRM can be constructed in this case : the first of them
is based on the continuation of the coefficient at lower-
order derivatives and the second approach uses the
continuation of the coefficient at the highest-order
derivatives. Only the first variant has yet been pub-
lished in connection with numerical simulation of the
convection/diffusion phase change processes.

Let us briefly explain the first variant. Instead of
(14), (15) for the irregular time-dependent domain
G*(t) we consider for the whole rectangular com-
putation domain G the following equations :

0 1
% +(v,, grad) v, = ;grad P,

+div(vgradv,)—C.,v,+S! (29)

divv, = 0. (30)

Here the continuation coefficient C, and the right hand
side S} are chosen like this:

0.  (x,»)eG*),
€= {82, (x,1) € G/G*(1). (31
.S (myeGH),
Se= {0, (x,¥) e G/G*(1) (32)

where ¢ is sufficiently small. It is clear that C, and S
can be formulated in various ways for particular prob-
lems.

It should be noted that the fictitious regions method
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of the form (29)—(32) is well known and has been used
for many years. A mathematical validation of the
method is provided in ref. [75]. More precisely, there
is obtained the following accuracy estimate for the
approximate v, and the correct v solutions in this work
for steady-state and unsteady incompressible viscous
fluid flow problems:

lv.—v| < const.g'? (33)

in corresponding norms.

In more recent publications this approach is called
the ‘porous medium model’. Really, the term C.,v, in
equation (29) can be interpreted as the resistance force
for fluid motion in a porous medium. It is well known
that eliminating inertia terms we obtain the Darcy-
Boussinesq equation for a porous medium in the fol-
lowing form:

K
V= — ;1— grad P. (34)

Combining equations (34) and (14) and continuing
the coefficient K by zero value in a liquid phase and
a very high value in a solid phase, we can obtain a
single equation similar to (29), which describes con-
sidered processes in the whole domain including liquid
and solid phases. A similar approach can be applied
for a two-phase zone too.

More details of the ‘porous medium model’ are
presented in refs. [76-78], where the enthalpy for-
mulation is employed for the energy equation and
pure substance solidification in a cavity is considered.
The same approach has been used in ref. [79] for the
investigation of alloy solidification, where the mushy
region is considered as a porous medium. This
approach was used by the same authors and their
colleagues for studying some particular processes.
Thus, a laminar unsteady pure substance flow through
cooled tubes is investigated numerically in ref. [80]
involving solidification on the tube walls. Pure gallium
melting in a cavity with a heated side wall is calculated
in ref. [81] and compared with measurements. Pure
tin solidification is investigated in ref. [82]. Ther-
mosolutal convection in a liquid phase is considered
in ref. [83].

It is apparent that the ‘porous medium’ model is
widely used for the numerical simulation of various
convection/diffusion phase change processes. At the
same time a number of works are devoted to the
improvement of the numerical algorithm. The empha-
sis is on the evaluation of the permeability X (equation
(34)) in a porous medium and its continuation in a
solid phase. Numerical results from [84] indicate that
the predicted thermal field during convection/
diffusion phase change essentially depends on the
evaluation of the effective permeability K and a new
technique for choosing X is suggested in this work.
Further, more correct determination of the per-
meability is developed in ref. [85], where the nature of
the mushy region is taken into account. It is necessary
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to note the last works of the same authors in this
field [86, 87]. It should be noted that the technique
suggested in ref. [84] is based on the previous works
performed by Bennon and Incropera.

Another direction in the developing numerical tech-
niques for the prediction of convection/diffusion
phase change is the use of more accurate methods.
Shyy and Chen [88] presented an algorithm based on
nonorthogonal coordinates and adaptive grids. Sol-
idification in a cavity heated from one side has becn
considered using the ‘porous medium’ model. It is
interesting that Cartesian and curvilinear vclocity
components are used simultaneously in this method.
Dimensionless equations in this case can be written in
general form as:
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U= uy,—rvx,, (39)

V= vx;—uy., (40)

g = \,f +,V,f. (41)

G> = XXy VP, 42)

a:=x2+¥i, (43)

J=x:p,—x,). (44)

Note that all improvements in this work are con-
nected with flow prediction, whereas the simplest lin-
car dependence of the liquid phase volume fraction
on the temperature in a two-phase zone is employed.
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The usage of nonorthogonal coordinates and adaptive
grids allow more accurate computations of heat and
mass transfer at high Grashof numbers. A multi-
parametric investigation of dimensionless equations
(35)-(44) at normal and reduced gravity conditions is
conducted in this paper and refs. [89, 90] including
buoyancy and thermocapillar convection.

The works considered in this paragraph indicate
that numerical methods developed by different
authors for solving convection/diffusion solidification
problems and based on the *porous medium’ model
can be generally interpreted from the mathematical
vicwpoint as a variant of fictitious regions methods.

5.2. Stream function—vorticity formulation

As for the fourth-order stream function equation
for meli flow description, we recognize three basic
vartants of the fictitious regions method (see ref, [74]
for more details). The first is based on the con-
tinuation of the coefficient at lower-order derivatives.
the next approach uses the continuation of the
coeflicient at the second-order derivatives and the con-
tinuation of the coefficient at the fourth-order deriva-
tives is carried out in the last variant. Only the first
two variants can be found in the reviewed literature on
mathematical modeling of convection/diffusion phase
change processes.

In the first variant instead of equation (18) in the
irregular domain G*(¢) the following equation is to
be solved in the whole domain G

CAY,

. + (V. grad)Ay, = div (v grad Ay,)
p

~Cp ST

(45

where functions C, and S? are defined in just the same
way as in (31), (32). This approach has been proposed
in refs. [91, 92] for simulation ol solidification in a
cavity with hot and cold vertical walls. The same
technique is applied in ref. [93] to predict metal sol-
idification in a mould.

An example of the second variant of FRM is the
method {rom ref. [94]. This variant can be considered
as an exiension of the “porous medium’™ modei
approach in the stream function-vorticity formu-
lation. In this case instead of equation (45) the follow-
ing equation is to be solved:

CAY

(VY grad)Ay,

= div(vgrad Ay, + C, grady )+ S8Y. (46)

Note, that this variant of the fictitious regions method
can be used to model incompressible viscous fluid
flows in multi-connected domains.

5.3. Flow prediction in the mushy region
Mathematical models of heat and mass transfer

processes in the mushy region can be based on various

assumptions [95]. The emphasis here is on describing
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mushy region processes and the inclusion of inter-
actions between all existing zones. Starting with sep-
arate equations for each phase in the mushy region,
authors carry out space averaging of these equations
and derive unified continuous equations for the mushy
region itself. This averaging can be done in different
ways. To consider the mushy region as a liquid with
solid inclusions, a variable viscosity model is used in
some approaches. Another way is based on the
‘porous medium’ model and a dendritic structure
assumption for the mushy region. Choosing one or
another model it is useful to know the behavior of
metal alloys in mushy region. The review [96] gives a
good picture of the behavior of different alloys in
some technological solidification processes.

To consider the mushy region as a porous medium
(e.g. [97]), the momentum equation can be written as
(29), (30), but the continuation coefficient C, and the
RHS instead of (31), (32) are to be determined from
some physical reasons based on the material prop-
erties. This approach has been used by different
authors for modeling specific processes and fine agree-
ment with experimental data has been obtained.

Let us list some applications of this method. Binary
alloy solidification in a rectangular cavity is inves-
tigated numerically in ref. [98] in comparison with
measurements. A comprehensive discussion of
numerical methodologies for solving PDEs of the
above mentioned model is done in ref. [99]. A math-
ematical model and its numerical implementation for
prediction of the binary mixture NH,CI-H,O melting
is presented in ref. [100], where buoyancy-driven as
well as surface-tension (Marangoni) convection are
taken into account. An extended comparison between
numerical and experimental results for this model can
be found in ref. [101]. Numerical study of sol-
idification of the binary solution Na,CO; is conducted
in ref. [102] for annuli between horizontal cylinders.
It is interesting to point out an application of the
above mentioned approach for phase change pre-
diction in geology [103]. A similar ‘porous medium’
model has been used in ref. [104] for numerical simu-
lation of convection/diffusion problems of melting.
To increase the accuracy of computations on fixed
rectangular grids, authors perform some correction of
the coefficients in the vicinity of phase change interface
for the energy equation using approximate analytical
values for the thickness of the thermal boundary layer
and the heat transfer coefficient.

Further developments of the mathematical model
describing convection/diffusion phase change pro-
cesses can be found in refs. [105, 106]. As distinct from
the previous works, spatial variations of the liquid
fraction are taken into account in this paper for the
mushy region. This model also is based on the ‘porous
medium’ assumption and unified equation for-
mulation similar to (29), (30) for all phases—liquid,
mushy and solid. Continuing the review of the works
in this field, let us note the paper [107] where the
model suggested in refs. [105, 106] is employed for the
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numerical simulation of vertical direct solidification
of dendritic binary alloys.

In further studying convection/diffusion phase
change processes and considering the mushy region,
a hybrid model of the mushy region can be useful.
Such a hybrid model based on some switching
between the ‘porous medium’ model and the variable
viscosity model depending on the solid fraction in the
mushy region is developed in ref. [108].

6. CONCLUSIONS

Wide experience is accumulated in the numerical
simulation of convection/diffusion phase change pro-
cesses. Many groups of scientists are now developing
numerical techniques for phenomena with phase
change.

Most of the mathematical models are based on
the conventional Boussinesq approximation for the
Navier-Stokes equation. To improve the models,
more correct hydrodynamics equations for the con-
vective phenomena description are to be used.
Further, it is necessary to consider more precisely
processes in the vicinity of the phase change interface
involving density variation through the interface.
Note that in this case non-zero boundary conditions
for the melt velocity have to be used at the phase
change interface. New publications concerned with
the mushy region model development can be expected.

Recapitulating all the above discussions, let us note
once again that the numerical methods for solving
convection/diffusion phase change problems can be
divided into two different groups—variable grid
methods and fixed grid methods. The fixed grid
numerical methods are algorithmically more simple
than variable grid techniques. For a long time there
existed an opinion, that variable grid methods are
more accurate, but Lacroix and Voller [109] demon-
strated that the methods from the first and the second
groups produced at the same order of mesh size prac-
tically identical solutions in sense of accuracy. From
a mathematical point of view the fixed grid numerical
methods can be considered as different variants of the
fictitious regions method. Respectively, all accumu-
lated results for this method such as existing, unique-
ness and accuracy of the solution can be used in the
mathematical modeling of convection/diffusion phase
change problems.

It should be noted that there is a distance between
modern computational mathematics and numerical
methods for prediction convection/diffusion phase
change. In some cases numerical techniques are
employed without any theoretical validation of con-
vergence, accuracy, etc. Unfortunately, it is imposs-
ible to obtain such validation for any problem that
is to be solved numerically. But in cases where this
validation is possible, it can be used for real decreasing
of people’s and computer’s efforts in the numerical
solution of these problems.
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